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Within the Heisenberg eddy-viscosity approximation, we apply Kraichnan’s distant-interaction algorithm
together with thee expansion of Yakhot and Orszdd. Sci. Computl (1), 3 (1986]. This yields, in the
leading order, a value of the Kolmogorov constant in exact agreement with that of Yakhot and Orszag's
renormalization-group calculations. Various important features regarding tmgpansion are brought out
through the stages of the approximations involved. #legpansion is found to be an expansion in powers of
/3 rather than simply. A jump discontinuity in the spectrum is seen to be smoothed out by éxg@ansion.
Further, the extrapolation parameter of the distant-interaction algorithm becomes irrevelant in the leading order

of the e expansion.

PACS numbdis): 47.27.Gs, 47.27.Jv

I. INTRODUCTION

The first phenomenological approach to the problem of

Do

FK= e

)

homogeneous isotropic strong turbulence in fluids was of-

fered by Kolmogorov and Obukhop,2]. The underlying

the space dimension beimy The approximations in the cal-

mechanism of the energy cascade from large to small scalé@/lation involved nonlocaldistan} interactions among the

was hypothesized to Hecal in nature, leading to the energy
spectrum

E(k)=Ce?% (1)

(in the universal inertial rangenainly based on dimensional

grounds. Here is the mean energy injection rate to the fluid
at large scalegs the inverse length scale, atthe universal
Kolmogorov constant.

Attempts have been made to calculate the universal nu
ber C from a stochastic version of the Navier-Stokes dynam
ics

M Vyu= VP+ Veu+f 2
r (u- )U——T voVeu (2

[u(x,t) andP(x,t) being the velocity and pressure fielgs,

Fourier modes and a procedureeéxpansion. This yielded
a numerical value of in remarkable agreement with the
experimental valuesG=1.44,1.74)[7,8] when € was set
equal to 4 in the leading contributing order.
Kraichnan[9,10], in order to analyze the effect of such
nonlocal interactions, formulated the distant-interaction algo-
rithm (DSTA), which involved approximations similar to
Yakhot and Orszag’s calculations. He applied the DSTA to a
non-RG closure based modelxplicitly, the energy equation
of the direct interaction approximatigidIA)] and obtained

Min asymptotic expression for the eddy viscositk|p’) in

the Heisenberg approximatiptbl]. The ensuing results were
different although not far, from that of Yakhot and Orszag.
It may be noted that Kraichnan’s analysis of the Heisenberg
eddy viscosity under the DSTA did not involve aagxpan-
sion. Rather,e was fixed at 4(effectively) right from the
beginning. However, it would be interesting to see the effect
of e expansion together with the approximations of the

the density; accompanied by the incompressibility conditionDS—I—A [12].

V-u=0] where the fluid is assumed to be driven by a ran-

dom external stirring forcé(x,t). In particular, Yakhot and
Orszag[ 3] took up the dynamic renormalization-gro(lRG)
approach developed by Ma and Mazerdd and Forster,
Nelson, and Steph€is] and used it in the randomly stirred
model of DeDominicis and Martif6] where the correlation

of the external stirring force is assumed to have a Gaussia,ep1

white-noise statistics with the correlation
(fi(k,0)fj(k',0"))
=F(k)P;;(k) [27]96% k+k)[27] 8w+ o)
in the Fourier space, with
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In this paper we use the DSTA in the energy equation of
the DIA to get an asymptotic expression of the Heisenberg
eddy viscosity for space dimension Remaining within this
eddy-viscosity picture, we carry out tkeexpansion of Ya-
khot and Orszag and calculate an amplitude ratio in the lead-
ing order. The energy integral being UV marginaleat O,

e € expansion can be interpreted as a Laurent expansion
about the UV pole, withO(1/e) in the leading order. It is
observed that this expansion is basically in powers/8f
rather than justk. This yields, in the leading order and for
e=4, a value ofC in exact agreement with that of Yakhot
and Orszag. This agreement is important beacause we have
based our calculation on the energy equation of the DIA,
which does not involve the band-elimination technique of the
RG.

Further, we observe various important features of ¢he
expansion displayed through the stages of the approxima-
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tions. The jump discontinuity in the energy spectrum isassumingd(k,p,q) to be symmetric in all three indices. For
found to be smoothed out in the leading ordesming from  exponential decay of the response and correlation
the UV polg of the e expansion. Importantly, it is explicitly

shown that the DSTA extrapolation parameier(Kraich- _ 1
nan’s 8), which may be assumed to measure the strength of o(k.p.a)= (K K2+ () p2+ v(q) O ©®)
nonlocality in the approximation, becomes irrelevant in the
leading order of thes expansion. in the Edwards’ simplified assumption of generalized
fluctuation-dissipation theorei®DT) [14]. The geometrical
Il. DISTANT-INTERACTION ALGORITHM coefficients are given by
For the triad interactiop+ g=Kk, with k being the exter- 2k?b(k,q,p)= Pij1 (K)Pjm(P) Pin(a) Prmi( @), (7)
nal wave vector, the DSTA9,10] can be summarized as
follows. o 2k2b(k,p,q) = Piji (K)Pjn( D) Pn(P)Pomi(P),  (8)
(1) Consider the eddy viscosity felt at the wave number
due only to wave numbers(q)>p’, denoted by 2a(k,p,q)=b(k,p,q)+b(k,q,p). 9
v(k|p’) for p’>k. After some algebra, it can be shown tlha6]

Thus the effect of |f,q)<p’ is entirely ignored.
(2) Extrapolatep’ to a wave numbehk, with A\=1 an
O(1) numerical constant, to get

d-3
b(ka.p)= (Y +x2)+ - (1-2) (10

and
v(k|]Ak)=lim v(k|p"). g
[N p —3
P b(k,p.Q)= 1 (Z+xy)+ —5—(1-y) (1
(3) Identify the eddy viscosity &t as
(k)= p(KI\K). where
. , . _pq _keg _ kep
Thus in the DSTA, the calculations are performed in a X=——), =—, z=-— (12
region of highly nonlocal interactions, and then the results Pa kq kp

are extrapolated to a region of local interactions. We shall Net energy transfer rate across a wave nunjiiedefined
call A the extrapolation parameter of the DSTA. It may beas[lS]

assumed that the numerical valuexofmneasures the strength
of nonlocality in the approximation under the DSTA. o j

Kraichnan basically used the idea of eddy viscosity ob- I(j)= f T(p,q)<j(k)dk_f Tp.g=j(Kdk, (13
tained by applying the DSTA to the energy-transfer equation ' 0

rather than the response equation of the direct interactiofjhere the inequalities expressed as subscrip(k) refer
approximation[13], thereby avoiding the added problem of ;, 1o region of the §,q) integration in Eq.(5), with the
infrared divergence foe=3 (discovered by Edwardgl4]) triangle conditionp+q=k.

with the response integral of the DIA, while the Kolmogorov Noting that E(k)~ki~ 1/ *Z(dw/[ 27])|G(k, )|2F (k)

scaling[Eq. 1 occurs fore=4. with the renormalized propagatorG(k,w)=1[—iw

+Kk?v(k)], we getE(k)~kItF(k)/k?v(k). Using Eq.(3)

Ill. CONSERVED ENERGY TRANSFER this yields
The DIA energy-transfer equatidd3,15 can be written Kl-e
as E(k)~ PR (14)
17
E+2vok2)E(k;t,t)=T(k;t,t) (4)  On the other hand, when scaling arguments are applied to
Eqg. (22), we get
where the transfel (k) (suppressing the indety, in d di- E(k)
mensions, is given by16] v(K)~ ) (15)
2 d
T(k)= 8k 2kd—1J d_pe(k,p,q) The above two equations yield the following scaling rela-
(d—1) Sy tions:
«|ak.p.q) E(p) E(@) 1 (k.d.p) E(p) E(k) E(k)~k' 23,
T pd-tgd-t 270 pd-1d-1 k)~ k- (16)

E(a) E(k)

—%b(k,p,q) prE eyl (5  Thus the naive dimension of the above flux integral, Eq.

(13), is found to be




PRE 61 HEISENBERG’S EDDY-VISCOSITY APPROXIMATION. . . 2607

I()~j* e, (17)  which, upon using the Heisenberg approximation, &@),
yields
when Egs (5) (6), and (16) are used in Eq(13). We must

havell(j)=¢ because is the constant rate of energy trans-
fer in the inertial range. Thus conserved transfer of energy »(K p)=——
demands thakl(j) be wave number independent, and hence
clearly demands=4 in the inertial range. E(q)
When we use the scaling relations from Ed6) in the +b(k,p,q) —— = pd- 11 (22
transfer integral in Eq(5), we find that it is both UV and IR
convergent in the range <0e<6. Therefore this integral
does not pose any problem for the Kolmogorov vaise4,  This integral is to be expanded in the linpie=k. The Taylor

which asserts conserved transfer of energy, as seen from Egixpansions for the quantities in the integral can be calculated
(17). from Egs.(10)—(12), (6), and(16) to be

d-1)? J fﬁ—ﬁ(kpq){b(kq P)E(p)

IV. EDDY VISCOSITY p d—3
_ _ _ _ b(k,q,p)=—2(1—22)+222(1—22)+(—)(1—22)

In this section we shall derive an asymptotic form of the k 2
eddy viscosity from the energy-transfer equatiorn idimen-

. ; +., (23
sions, and analyze some of the effectsea#xpansion. Here
the p>k expansions are different from Kraichnan’s expan-
sions in the sense that they exploit teimensional angular P ) d-1 )
integrals directly. We shall try to make the presentation of ~ P(KP.@)=—§2(1=2)+| ——[(1-2)+---, (24
these expansions somewhat in detail in the following in order
to bring out some of the features of tlkeexpansion to be

carried out in the next section. €\ k
K,p,q)=6(0p, 1+ 1—=|=z+---¢, 25
Kraichnan[17] defined the eddy viscosity(k|p’) felt at 6(k,p.q)=6(0p.p) 6 pZ @9
k due to interactions only withp,q)>p’ in the Heisenberg
approximation[ 11]: (p)
E(q)=E(p)—kz ey (26)
T(k[p")=—2v(k|p" ) K?E(K), (18) P
which is obtained from the transfer integfB{k) by setting 1 1 K
an IR cutoff atp’. Then from Eq.(13) the energy-transfer 1 oo 1td=1)—z+ (27
rate to all wave numbersg(qg)>p’ from distant wave num- a P P
bersk<k’ is
wherez=cosé, 6 being the angle betwednandp. Combin-
o K’ , ing them we get
e = [ “Tadpnakp =k, a9

o(k,p,a)b(k,q,p)
the first integral in Eq(13) being negligible because it in-

volves the regiork>p’ and (p,q)<k’, where the triangle = 9(0,p, p){ 2(1-72)+( 3 )22(1_22)
condition can hardly be satisfied in the linpt>k’.
We now turn to calculat&(k|p’) from T(k) with a lower d—3
cutoff atp’ and invoking the DSTA. In the limip’>k we +(_)(1_ZZ)+ . (28)
havep~q, and hence 2
E(p) E(q) E(k) E(q)
T s e forany d>2—-2¢€/3. (20 o(k,p,a)b(k,p,q) ——
p q q
Thus only the terms containing(k) in Eq. (5) dominate, _ 6(0p,p) p ., (d—1 2
leading to =~ || T A (A=)
p
4k2E(k)f fﬁ ( f) 21— 52
T(klp')=— —— 0k —|d=5]z°(1-2°) (E(p)
(k[p") A1) (k,p,q) 6
JE(p)
E(q) +27%(1-2%) p—+--~} (29
b(k,q,p)E(p)+b(k,p,q) e — P p

(22 Using the expansions from Eq®8) and(29) we find
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2 o0
6(k,p,q)| b(k,q,p)E(p)+Db(k,p,q) squ v(klp) =47 Ad(e)fp,dp 6(0,p,p)E(p)
=0(O,p,p){{(d—2)(1—22) +de’0(0,p’,p’)E(p’>} (35
+(3—d)Z4(1-2%)}E(p) where
L 2(1-2) D) 30 A _ d*-d-2e/3 B 1 a6
S TR (9= "qarz) ¢ BTdary ©9
whence we make the critical observation that @) con- It may be noted that th®(€) term here is different from that
tributions to the first and second terms of the left-hand sidén the renormalization-group calculatiof,18.
canceleach other. Thereforeexpansionsettinge=0 in the Power counting in this integral shows that it is UV con-
coefficient$ at this stage does not make any difference. Thevergent fore>0. Finally, carrying out the integration in Eq.
only O(e) coefficient that can appear is from the term (35, which gives a factoO(1/e), we obtain
2 |3
&E(p):(l_? £+5(p P )E(p). (31) V(klp,):d__l[;Ad(f)"‘Bd p'o(0p',p" )E(P).
ap p

(37
where the term involvingé(p—p’) appears because the
spectrum jumps from zero to the Kolmogorov valuepat V. € EXPANSION

=p’ in the Zeddy-vi§cosity pictur9,10]. It may be noted Noting that the integrals in Eqé5), (22), and(35) are UV
that theO(€“) and higher order terms occur with powers of marginal ate=0, we now carry out the: expansion about

k/p, higher than the leading contributing orde(k°/p°). e=0 with this expression for eddy viscosity, E&7). Using

Making use of the formulas for angular integration, step(3) of the DSTA, and using(0,p’,p’)=1/2v(p’)p’2,
we get
— 2 —
jng_Sd’ fﬁz il k)= v(k|\k ——2 3A +B —E(}\k) 38
% 2'd0=3S,/d(d+2), Using the scaling relations
where Sy=27%%T'(d/2), the surface area of a unit sphere E(q)=Ce?%q* 2",
embedded in a-dimesional space, the angular integration of s (39
Eq. (30) yields v(q)=ae™™q 7,
dQ d— as suggested by EL6), Eqg. (38) leads to
- - 2_
- Ad(6)+Bd N 5/3 (40)
aE(r»} - ¢ d-1
P ap |’ Now we note thal is an irrelevant parameter in the sense
_ that undere expansion
whence Eq(22) yields
A B=1+0(e), (41)
1 ©
v(klp")= a1 mfp,dp 6(0,p,p) so that
(p) Ag(e)N~B=A4(0)+O0(e), (42)
x| (d?>~d—1)E(p)+p . (39 .
leading to
We see that the factodf—d—1) is a consequence ekact a? 0
cancellationof the O(e€) terms. Thus this factor is the same T d-1 Ad(0)+o( )| (43)

with or without e expansion.

This result matches those of Kraichnan for bdth3 and  As the integrals in Eq95), (22), and(35) are UV marginal
2. For comparison see E.5 for d=3 and Eq.(4.6) for  at =0, this is a Laurent expansion inabout the UV pole
d=2 in Ref.[17]. The latter result can easily be cast into theat e=0, the leading order bein@(1/e).
present form after some algebra. We observe from Eqs40), (41), (36), and (42) that €

Now as E(p)=A,p* 2<?, using Eq.(31), Eq. (34) re- occurs with a factor of 1/3 in all places. Therefore the
duces to expansion in Eq(43) is actually an expansion in powers of
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e/3 rather than just. This suggests that the range of validity lated analytically by making approximations to the flux inte-
of the e expansion can be trusted over a much wider range ofral I1(j). On the other hand, we have used the numerical
values ofe than just small values close to zero. It may fur- value from Eq.(45), which leads to a different result.

ther be noted that the normalexpansion in a RG analysis

bgsed on a shell-.elirr_lination process from the viscogs end VI. CONCLUSIONS

yields ane expansion in powers of rather thane/3, requir-

ing small values ot for its validity. The presen¢ expansion We have used the energy equation of the D&Xpressed
therefore offers a better confidence in thexpansion pro- in a generald space dimensions, E¢)] and assumed that
cedure. Heisenberg's eddy-viscosity assumption, E@8), holds.

Noting from Eq.(36) that A;(0)=2/5, and Eq.(43) re-  The transfer integral, Eq5), being both UV and IR conver-
quiring no particular value oh in the leading order, we gent in the region €& e<6, the calculations are safe for the

therefore get Kolmogorov valuee=4, dictated by the condition of con-
served energy transfer EqL7). Remaining within such a

a? 13 3 closure scheme, we have applied Krichnan’s DSTA and ob-

c 24A3(0) =15 @44 tained an asymptotic expression of the Heisenberg eddy vis-

cosity in space dimensiod, which led to an expression for

for d=3, Kolmogorov spectrume=4, in the leading order the amplitude ratiax?/C, Eq. (40). Performing Yakhot and
in the e expansion. It may be noted that the jump disconti-Orszag’se expansion about=0 now leads to Eq(43).
nuity associated with the energy spectrum in the eddyNoting that the transfer intergal is UV marginalet 0, this
viscosity picture(the term containind,) does not contrib- expansion is basically a Laurent expansion about the UV
ute in the leading order of the expansion. pole ate=0, the leading order being 1/e. Substituting the

When Eq.(44) is coupled with Kraichnan’$19] numeri-  Kolmogorov valuee=4 in the leading order, we have com-
cal result(which is also used by Yakhot and Orszag in theirbined the result with another exactly known amplitude ratio

calculationg 3] as an input alC? [Eq. (45)]. This yielded a value of the Kolmogorov
constantC [Eq. (46)] in exact agreement with Yakhot and
el 1 Orszag’s RG calculations, although the calculations did not
=0.1904 (45)

involve the band-elimination technique of the RG.
The agreement may be attributed to the following facts:
(see Leslig15]), one finally gets (1) the DSTA embodies similar nonlocal approximations as
in Yakhot and Orszag’s calculation§2) the e expansion
(a?/C)Y® (312017 3\ procedure smooths out the jump discontinuity in the energy
(a/C2)2’3:(0.19042’3: . 22( ﬁ)) =1.6057. spectrum in the eddy-viscosity picture in the sense that the
(46) correspondmg contribution is pushed into the ;ubleadmg or-
der with respect to the UV pole of the expansiony3) we
Upon carrying out some algebra it can be seen that the findlave made use of E¢45).
results of Yakhot and Orszag’s RG theory produce the sec- Without making thee expansion and fixinge=4, and
ond equality C=(3/20)¥/(0.1904¥° exactly (at d=3),  setting the extrapolation parameter 1, yielded the value
whereas the last equalitg=1.6057 does not match with C=1.4764. The disagreement with Kraichnan’s regalt
their final result,C=1.617; there seems to have been a nu-=1.5618(with similar substitutionscan be attributed to the
merical error in the latter. fact that Kraichnan does not use E45) in his calculations.
The agreement with the RG result of Yakhot and Orszaglhis further suggests that anexpansion in the framework
is because of the fact that the leading order contribution irof Refs.[9,10], which does not use E¢45), would not re-
the e expansion remains the same in the present calculatiomproduce Yakhot and Orszag’s value or
together with the fact that we have used the same numerical We have also made various important points aboutethe
result of Eq.(45) as has been used by Yakhot and Orszag. expansion through the stages of the approximations. It is
At this point it may be noted that the DSTA extrapolation seen after the Taylor expansion in H32) that two O(e)
parametein can be set equal to unity along with the choiceterms exactly cancel out, and only the te#i/Jdp gives a
of making no e expansion, and setting=4, in order to term ofO(e). Further it was noted that th@(e?) and higher
cross-check our result with that of R€@]. This would yield order terms occur with powers &fp, higher than the lead-
ing contributing orderQ(k%p°), of the DSTA.
o® irs _a3 It was further observed after E(B6) that theO(e) term
c 2[4A3(4) +Ba]A (47) of Ay(e) is different from that in the renormalization-group
calculations. The difference may be attributed to the fact that
Noting that Ag(4)=10/45,B;=1/15, and «%C  we have used a closure model in the calculations.
=(7/60)\~*® (in agreement with Kraichnan’s resy]), An important result is that it is explicitly seen in E@3)
and setting\ =1 yieldsC=1.4764. This result turns out to that the DSTA extrapolation parameter(Kraichnan's B)
be different from that in Ref.9], namely,C=1.5618, under becomes irrelevant under the expansion, so that the nu-
the same substitutions. merical value of\ becomes irrelevant in the leading order.
The difference arises because Kraichnan does not use the We have also observed that theexpansion is basically
exact numerical value from E¢45) in the derivation in Ref. an expansion in powers @f3 rather than just. Whether it
[9]. Effectively, an approximate value fat/C? was calcu- has any possible connection with the IR divergencesefor

Cc? (3.022%2
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=3 associated with the response integral of the DIA remaingorrections are not suppressed by the analytical averaging
an open query. We could, however, bypass the danger gfrocedure.
encountering the IR divergence by using the energy equation
of the DIA, which is devoid of any such divergences.
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