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Heisenberg’s eddy-viscosity approximation, the distant-interaction algorithm,
and the e expansion in turbulence

Malay K. Nandy*
Department of Physics, Indian Institute of Technology, Institution of Engineers Building, Panbazar Flyover, Guwahati 781 001,

~Received 16 August 1999!

Within the Heisenberg eddy-viscosity approximation, we apply Kraichnan’s distant-interaction algorithm
together with thee expansion of Yakhot and Orszag@J. Sci. Comput.1 ~1!, 3 ~1986!#. This yields, in the
leading order, a value of the Kolmogorov constant in exact agreement with that of Yakhot and Orszag’s
renormalization-group calculations. Various important features regarding thee expansion are brought out
through the stages of the approximations involved. Thee expansion is found to be an expansion in powers of
e/3 rather than simplye. A jump discontinuity in the spectrum is seen to be smoothed out by thee expansion.
Further, the extrapolation parameter of the distant-interaction algorithm becomes irrevelant in the leading order
of the e expansion.

PACS number~s!: 47.27.Gs, 47.27.Jv
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I. INTRODUCTION

The first phenomenological approach to the problem
homogeneous isotropic strong turbulence in fluids was
fered by Kolmogorov and Obukhov@1,2#. The underlying
mechanism of the energy cascade from large to small sc
was hypothesized to belocal in nature, leading to the energ
spectrum

E~k!5C«̄2/3k25/3 ~1!

~in the universal inertial range! mainly based on dimensiona
grounds. Here«̄ is the mean energy injection rate to the flu
at large scales,k the inverse length scale, andC the universal
Kolmogorov constant.

Attempts have been made to calculate the universal n
berC from a stochastic version of the Navier-Stokes dyna
ics

]u

]t
1~u•¹!u52

¹P

r
1n0¹2u1f ~2!

@u(x,t) andP(x,t) being the velocity and pressure fields,r
the density; accompanied by the incompressibility condit
¹•u50] where the fluid is assumed to be driven by a ra
dom external stirring forcef(x,t). In particular, Yakhot and
Orszag@3# took up the dynamic renormalization-group~RG!
approach developed by Ma and Mazenko@4# and Forster,
Nelson, and Stephen@5# and used it in the randomly stirre
model of DeDominicis and Martin@6# where the correlation
of the external stirring force is assumed to have a Gaus
white-noise statistics with the correlation

^ f i~k,v! f j~k8,v8!&

5F~k!Pi j ~k! @2p#ddd~k1k8!@2p#d~v1v8!

in the Fourier space, with

*FAX: 191 361 521916.
Electronic address: mknandy@iitg.ernet.in
PRE 611063-651X/2000/61~3!/2605~6!/$15.00
f
f-

les

-
-

n
-

an

F~k!5
2D0

kd241e
, ~3!

the space dimension beingd. The approximations in the cal
culation involved nonlocal~distant! interactions among the
Fourier modes and a procedure ofe expansion. This yielded
a numerical value ofC in remarkable agreement with th
experimental values (C51.44,1.74) @7,8# when e was set
equal to 4 in the leading contributing order.

Kraichnan@9,10#, in order to analyze the effect of suc
nonlocal interactions, formulated the distant-interaction al
rithm ~DSTA!, which involved approximations similar to
Yakhot and Orszag’s calculations. He applied the DSTA t
non-RG closure based model@explicitly, the energy equation
of the direct interaction approximation~DIA !# and obtained
an asymptotic expression for the eddy viscosityn(kup8) in
the Heisenberg approximation@11#. The ensuing results wer
different, although not far, from that of Yakhot and Orsza
It may be noted that Kraichnan’s analysis of the Heisenb
eddy viscosity under the DSTA did not involve anye expan-
sion. Rather,e was fixed at 4~effectively! right from the
beginning. However, it would be interesting to see the eff
of e expansion together with the approximations of t
DSTA @12#.

In this paper we use the DSTA in the energy equation
the DIA to get an asymptotic expression of the Heisenb
eddy viscosity for space dimensiond. Remaining within this
eddy-viscosity picture, we carry out thee expansion of Ya-
khot and Orszag and calculate an amplitude ratio in the le
ing order. The energy integral being UV marginal ate50,
the e expansion can be interpreted as a Laurent expan
about the UV pole, withO(1/e) in the leading order. It is
observed that this expansion is basically in powers ofe/3
rather than juste. This yields, in the leading order and fo
e54, a value ofC in exact agreement with that of Yakho
and Orszag. This agreement is important beacause we
based our calculation on the energy equation of the D
which does not involve the band-elimination technique of
RG.

Further, we observe various important features of thee
expansion displayed through the stages of the approxi
2605 ©2000 The American Physical Society
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2606 PRE 61MALAY K. NANDY
tions. The jump discontinuity in the energy spectrum
found to be smoothed out in the leading order~coming from
the UV pole! of thee expansion. Importantly, it is explicitly
shown that the DSTA extrapolation parameterl ~Kraich-
nan’sb), which may be assumed to measure the strengt
nonlocality in the approximation, becomes irrelevant in t
leading order of thee expansion.

II. DISTANT-INTERACTION ALGORITHM

For the triad interactionp1q5k, with k being the exter-
nal wave vector, the DSTA@9,10# can be summarized a
follows.

~1! Consider the eddy viscosity felt at the wave numbek
due only to wave numbers (p,q).p8, denoted by

n~kup8! for p8@k.

Thus the effect of (p,q),p8 is entirely ignored.
~2! Extrapolatep8 to a wave numberlk, with l>1 an

O(1) numerical constant, to get

n~kulk!5 lim
p8→lk

n~kup8!.

~3! Identify the eddy viscosity atk as

n~k![n~kulk!.

Thus in the DSTA, the calculations are performed in
region of highly nonlocal interactions, and then the resu
are extrapolated to a region of local interactions. We sh
call l the extrapolation parameter of the DSTA. It may
assumed that the numerical value ofl measures the strengt
of nonlocality in the approximation under the DSTA.

Kraichnan basically used the idea of eddy viscosity o
tained by applying the DSTA to the energy-transfer equat
rather than the response equation of the direct interac
approximation@13#, thereby avoiding the added problem
infrared divergence fore>3 ~discovered by Edwards@14#!
with the response integral of the DIA, while the Kolmogoro
scaling@Eq. 1# occurs fore54.

III. CONSERVED ENERGY TRANSFER

The DIA energy-transfer equation@13,15# can be written
as

S ]

]t
12n0k2DE~k;t,t !5T~k;t,t ! ~4!

where the transferT(k) ~suppressing the indext), in d di-
mensions, is given by@16#

T~k!5
8k2

~d21!2
kd21E ddp

Sd
u~k,p,q!

3Fa~k,p,q!
E~p!

pd21

E~q!

qd21
2

1

2
b~k,q,p!

E~p!

pd21

E~k!

kd21

2
1

2
b~k,p,q!

E~q!

qd21

E~k!

kd21G , ~5!
of
e

s
ll

-
n
n

assumingu(k,p,q) to be symmetric in all three indices. Fo
exponential decay of the response and correlation

u~k,p,q!5
1

n~k!k21n~p!p21n~q!q2
~6!

in the Edwards’ simplified assumption of generaliz
fluctuation-dissipation theorem~FDT! @14#. The geometrical
coefficients are given by

2k2 b~k,q,p!5Pi jl ~k!Pjm~p!Pln~q!Pnmi~q!, ~7!

2k2 b~k,p,q!5Pi jl ~k!Pjm~q!Pln~p!Pnmi~p!, ~8!

2a~k,p,q!5b~k,p,q!1b~k,q,p!. ~9!

After some algebra, it can be shown that@16#

b~k,q,p!5
q

k
~y31xz!1

d23

2
~12z2! ~10!

and

b~k,p,q!5
p

k
~z31xy!1

d23

2
~12y2! ~11!

where

x52
p•q

pq
, y5

k•q

kq
, z5

k"p

kp
. ~12!

Net energy transfer rate across a wave numberj is defined
as @13#

P~ j !5E
j

`

T(p,q), j~k!dk2E
0

j

T(p,q). j~k!dk, ~13!

where the inequalities expressed as subscripts toT(k) refer
to the region of the (p,q) integration in Eq.~5!, with the
triangle conditionp1q5k.

Noting that E(k);kd21*2`
1`(dv/@2p#)uG(k,v)u2F(k)

with the renormalized propagatorG(k,v)51/@2 iv
1k2n(k)#, we getE(k);kd21F(k)/k2n(k). Using Eq.~3!
this yields

E~k!;
k12e

n~k!
. ~14!

On the other hand, when scaling arguments are applie
Eq. ~22!, we get

n~k!;
E~k!

kn~k!
. ~15!

The above two equations yield the following scaling re
tions:

E~k!;k122e/3,
~16!

n~k!;k2e/3.

Thus the naive dimension of the above flux integral, E
~13!, is found to be
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P~ j !; j 42e, ~17!

when Eqs.~5!, ~6!, and ~16! are used in Eq.~13!. We must
haveP( j )5 «̄ because«̄ is the constant rate of energy tran
fer in the inertial range. Thus conserved transfer of ene
demands thatP( j ) be wave number independent, and hen
clearly demandse54 in the inertial range.

When we use the scaling relations from Eq.~16! in the
transfer integral in Eq.~5!, we find that it is both UV and IR
convergent in the range 0,e,6. Therefore this integra
does not pose any problem for the Kolmogorov valuee54,
which asserts conserved transfer of energy, as seen from
~17!.

IV. EDDY VISCOSITY

In this section we shall derive an asymptotic form of t
eddy viscosity from the energy-transfer equation ind dimen-
sions, and analyze some of the effects ofe expansion. Here
the p@k expansions are different from Kraichnan’s expa
sions in the sense that they exploit thed-dimensional angular
integrals directly. We shall try to make the presentation
these expansions somewhat in detail in the following in or
to bring out some of the features of thee expansion to be
carried out in the next section.

Kraichnan@17# defined the eddy viscosityn(kup8) felt at
k due to interactions only with (p,q).p8 in the Heisenberg
approximation@11#:

T~kup8!522n~kup8!k2E~k!, ~18!

which is obtained from the transfer integralT(k) by setting
an IR cutoff atp8. Then from Eq.~13! the energy-transfe
rate to all wave numbers (p,q).p8 from distant wave num-
bersk,k8 is

P~k8up8!52E
0

k8
T~kup8!dk;p8@k8, ~19!

the first integral in Eq.~13! being negligible because it in
volves the regionk.p8 and (p,q),k8, where the triangle
condition can hardly be satisfied in the limitp8@k8.

We now turn to calculateT(kup8) from T(k) with a lower
cutoff at p8 and invoking the DSTA. In the limitp8@k we
havep'q, and hence

E~p!

pd21
'

E~q!

qd21
!

E~k!

kd21
for any d.222e/3. ~20!

Thus only the terms containingE(k) in Eq. ~5! dominate,
leading to

T~kup8!52
4k2E~k!

~d21!2 Ep8

`

dp R dV

Sd
u~k,p,q!

3Fb~k,q,p!E~p!1b~k,p,q!
E~q!

qd21
pd21G ,

~21!
y
e

q.

-

f
r

which, upon using the Heisenberg approximation, Eq.~18!,
yields

n~kup8!5
2

~d21!2Ep8

`

dp R dV

Sd
u~k,p,q!Fb~k,q,p!E~p!

1b~k,p,q!
E~q!

qd21
pd21G . ~22!

This integral is to be expanded in the limitp@k. The Taylor
expansions for the quantities in the integral can be calcula
from Eqs.~10!–~12!, ~6!, and~16! to be

b~k,q,p!5
p

k
z~12z2!12z2~12z2!1S d23

2 D ~12z2!

1•••, ~23!

b~k,p,q!52
p

k
z~12z2!1S d21

2 D ~12z2!1•••, ~24!

u~k,p,q!5u~0,p,p!H 11S 12
e

6D k

p
z1•••J , ~25!

E~q!5E~p!2kz
]E~p!

]p
1•••, ~26!

1

qd21
5

1

pd21 H 11~d21!
k

p
z1•••J , ~27!

wherez5cosu, u being the angle betweenk andp. Combin-
ing them we get

u~k,p,q!b~k,q,p!

5u~0,p,p!H p

k
z~12z2!1S 32

e

6D z2~12z2!

1S d23

2 D ~12z2!1•••J , ~28!

u~k,p,q!b~k,p,q!
E~q!

qd21

5
u~0,p,p!

pd21 F H 2
p

k
z~12z2!1S d21

2 D ~12z2!

2S d2
e

6D z2~12z2!J E~p!

1z2~12z2! p
]E~p!

]p
1•••G . ~29!

Using the expansions from Eqs.~28! and ~29! we find
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u~k,p,q!Fb~k,q,p!E~p!1b~k,p,q!
E~q!

qd21
pd21G

5u~0,p,p!F $~d22!~12z2!

1~32d!z2~12z2!%E~p!

1z2~12z2!p
]E~p!

]p
1•••G , ~30!

whence we make the critical observation that theO(e) con-
tributions to the first and second terms of the left-hand s
canceleach other. Thereforee expansion~settinge50 in the
coefficients! at this stage does not make any difference. T
only O(e) coefficient that can appear is from the term

]E~p!

]p
5S 12

2e

3 DE~p!

p
1d~p2p8!E~p!. ~31!

where the term involvingd(p2p8) appears because th
spectrum jumps from zero to the Kolmogorov value atp
5p8 in the eddy-viscosity picture@9,10#. It may be noted
that theO(e2) and higher order terms occur with powers
k/p, higher than the leading contributing order,O(k0/p0).

Making use of the formulas for angular integration,

R dV5Sd , R z2dV5Sd /d,

~32!

R z4dV53Sd /d~d12!,

whereSd52pd/2/G(d/2), the surface area of a unit sphe
embedded in ad-dimesional space, the angular integration
Eq. ~30! yields

R dV

Sd
@Eq. ~30!#5u~0,p,p!

d21

d~d12! F ~d22d21!E~p!

1p
]E~p!

]p G , ~33!

whence Eq.~22! yields

n~kup8!5S 2

d21D 1

d~d12!
E

p8

`

dp u~0,p,p!

3F ~d22d21!E~p!1p
]E~p!

]p G . ~34!

We see that the factor (d22d21) is a consequence ofexact
cancellationof the O(e) terms. Thus this factor is the sam
with or without e expansion.

This result matches those of Kraichnan for bothd53 and
2. For comparison see Eq.~3.5! for d53 and Eq.~4.6! for
d52 in Ref.@17#. The latter result can easily be cast into t
present form after some algebra.

Now as E(p)5L0p122e/3, using Eq.~31!, Eq. ~34! re-
duces to
e

e

f

n~kup8!5
2

d21 FAd~e!E
p8

`

dp u~0,p,p!E~p!

1Bdp8u~0,p8,p8!E~p8!G ~35!

where

Ad~e!5
d22d22e/3

d~d12!
; Bd5

1

d~d12!
. ~36!

It may be noted that theO(e) term here is different from tha
in the renormalization-group calculations@3,18#.

Power counting in this integral shows that it is UV co
vergent fore.0. Finally, carrying out the integration in Eq
~35!, which gives a factorO(1/e), we obtain

n~kup8!5
2

d21 F3

e
Ad~e!1BdGp8u~0,p8,p8!E~p8!.

~37!

V. e EXPANSION

Noting that the integrals in Eqs.~5!, ~22!, and~35! are UV
marginal ate50, we now carry out thee expansion about
e50 with this expression for eddy viscosity, Eq.~37!. Using
step~3! of the DSTA, and usingu(0,p8,p8)51/2n(p8)p82,
we get

n~k![n~kulk!5
2

d21 F3

e
Ad~e!1BdG E~lk!

2lkn~lk!
. ~38!

Using the scaling relations

E~q!5C«̄2/3q122e/3,
~39!

n~q!5a«̄1/3q2e/3,

as suggested by Eq.~16!, Eq. ~38! leads to

a2

C
5

1

d21 F3

e
Ad~e!1BdGl2e/3. ~40!

Now we note thatl is an irrelevant parameter in the sen
that undere expansion

l2e/3511O~e!, ~41!

so that

Ad~e!l2e/35Ad~0!1O~e!, ~42!

leading to

a2

C
5

1

d21 F3

e
Ad~0!1O~e0!G . ~43!

As the integrals in Eqs.~5!, ~22!, and~35! are UV marginal
at e50, this is a Laurent expansion ine about the UV pole
at e50, the leading order beingO(1/e).

We observe from Eqs.~40!, ~41!, ~36!, and ~42! that e
occurs with a factor of 1/3 in all places. Therefore thee
expansion in Eq.~43! is actually an expansion in powers o
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e/3 rather than juste. This suggests that the range of validi
of thee expansion can be trusted over a much wider rang
values ofe than just small values close to zero. It may fu
ther be noted that the normale expansion in a RG analysi
based on a shell-elimination process from the viscous
yields ane expansion in powers ofe rather thane/3, requir-
ing small values ofe for its validity. The presente expansion
therefore offers a better confidence in thee expansion pro-
cedure.

Noting from Eq.~36! that A3(0)52/5, and Eq.~43! re-
quiring no particular value ofl in the leading order, we
therefore get

a2

C
5 1

2
3
4 A3~0!5 3

20 ~44!

for d53, Kolmogorov spectrum,e54, in the leading order
in the e expansion. It may be noted that the jump discon
nuity associated with the energy spectrum in the ed
viscosity picture~the term containingBd) does not contrib-
ute in the leading order of thee expansion.

When Eq.~44! is coupled with Kraichnan’s@19# numeri-
cal result~which is also used by Yakhot and Orszag in th
calculations@3# as an input!

a

C2
5

1

~3.022!3/2
50.1904 ~45!

~see Leslie@15#!, one finally gets

C5
~a2/C!1/3

~a/C2!2/3
5

~3/20!1/3

~0.1904!2/3
53.022S 3

20D
1/3

51.6057.

~46!

Upon carrying out some algebra it can be seen that the
results of Yakhot and Orszag’s RG theory produce the s
ond equality C5(3/20)1/3/(0.1904)2/3 exactly ~at d53),
whereas the last equalityC51.6057 does not match with
their final result,C51.617; there seems to have been a n
merical error in the latter.

The agreement with the RG result of Yakhot and Orsz
is because of the fact that the leading order contribution
the e expansion remains the same in the present calcula
together with the fact that we have used the same nume
result of Eq.~45! as has been used by Yakhot and Orsza

At this point it may be noted that the DSTA extrapolatio
parameterl can be set equal to unity along with the choi
of making no e expansion, and settinge54, in order to
cross-check our result with that of Ref.@9#. This would yield

a2

C
5 1

2 @ 3
4 A3~4!1B3#l24/3. ~47!

Noting that A3(4)510/45,B351/15, and a2/C
5(7/60)l24/3 ~in agreement with Kraichnan’s result@9#!,
and settingl51 yieldsC51.4764. This result turns out t
be different from that in Ref.@9#, namely,C51.5618, under
the same substitutions.

The difference arises because Kraichnan does not use
exact numerical value from Eq.~45! in the derivation in Ref.
@9#. Effectively, an approximate value fora/C2 was calcu-
of

d

-
-

r

al
c-

-

g
n
n,
al

the

lated analytically by making approximations to the flux int
gral P( j ). On the other hand, we have used the numer
value from Eq.~45!, which leads to a different result.

VI. CONCLUSIONS

We have used the energy equation of the DIA@expressed
in a generald space dimensions, Eq.~4!# and assumed tha
Heisenberg’s eddy-viscosity assumption, Eq.~18!, holds.
The transfer integral, Eq.~5!, being both UV and IR conver-
gent in the region 0,e,6, the calculations are safe for th
Kolmogorov valuee54, dictated by the condition of con
served energy transfer Eq.~17!. Remaining within such a
closure scheme, we have applied Krichnan’s DSTA and
tained an asymptotic expression of the Heisenberg eddy
cosity in space dimensiond, which led to an expression fo
the amplitude ratioa2/C, Eq. ~40!. Performing Yakhot and
Orszag’se expansion aboute50 now leads to Eq.~43!.
Noting that the transfer intergal is UV marginal ate50, this
expansion is basically a Laurent expansion about the
pole ate50, the leading order being;1/e. Substituting the
Kolmogorov valuee54 in the leading order, we have com
bined the result with another exactly known amplitude ra
a/C2 @Eq. ~45!#. This yielded a value of the Kolmogoro
constantC @Eq. ~46!# in exact agreement with Yakhot an
Orszag’s RG calculations, although the calculations did
involve the band-elimination technique of the RG.

The agreement may be attributed to the following fac
~1! the DSTA embodies similar nonlocal approximations
in Yakhot and Orszag’s calculations;~2! the e expansion
procedure smooths out the jump discontinuity in the ene
spectrum in the eddy-viscosity picture in the sense that
corresponding contribution is pushed into the subleading
der with respect to the UV pole of thee expansion;~3! we
have made use of Eq.~45!.

Without making thee expansion and fixinge54, and
setting the extrapolation parameterl51, yielded the value
C51.4764. The disagreement with Kraichnan’s resultC
51.5618~with similar substitutions! can be attributed to the
fact that Kraichnan does not use Eq.~45! in his calculations.
This further suggests that ane expansion in the framework
of Refs. @9,10#, which does not use Eq.~45!, would not re-
produce Yakhot and Orszag’s value forC.

We have also made various important points about the
expansion through the stages of the approximations. I
seen after the Taylor expansion in Eq.~22! that two O(e)
terms exactly cancel out, and only the term]E/]p gives a
term ofO(e). Further it was noted that theO(e2) and higher
order terms occur with powers ofk/p, higher than the lead-
ing contributing order,O(k0/p0), of the DSTA.

It was further observed after Eq.~36! that theO(e) term
of Ad(e) is different from that in the renormalization-grou
calculations. The difference may be attributed to the fact t
we have used a closure model in the calculations.

An important result is that it is explicitly seen in Eq.~43!
that the DSTA extrapolation parameterl ~Kraichnan’sb)
becomes irrelevant under thee expansion, so that the nu
merical value ofl becomes irrelevant in the leading orde

We have also observed that thee expansion is basically
an expansion in powers ofe/3 rather than juste. Whether it
has any possible connection with the IR divergences foe
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>3 associated with the response integral of the DIA rema
an open query. We could, however, bypass the dange
encountering the IR divergence by using the energy equa
of the DIA, which is devoid of any such divergences.

Finally, we note that the intermittency corrections to t
Kolmogorov scaling are neglected in our calculations,
underlying assumption being the validity of a closure a
proximation. Relevant calculations corresponding to su
corrections would presumably require a formulation beyo
the presently available closure schemes where the del
nonlinear interactions in the dynamics giving rise to su
s
of
n

e
-
h
d
te

h

corrections are not suppressed by the analytical avera
procedure.
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